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Introduction



Background

• Exploring the Fukushima Effect
• identification and analysis of the tempo-spatial propagation of discourses

in the transnational algorithmic public sphere
• case study: Fukushima Effect (cf. Gono’i, 2015)
• data: mass and social media (German, Japanese)

+ Japanese Twitter
• www.linguistik.fau.de/projects/efe/
• funded by the Emerging Fields Initiative of FAU

• Team:
• Chair of Computational Corpus Linguistics

Prof. Dr. Stefan Evert, Philipp Heinrich
• Chair of Japanese Studies

Prof. Dr. Fabian Schäfer, Olena Kalashnikova
• Chair of Communication Science

Prof. Dr. Christina Holtz-Bacha, Christoph Adrian
• Chair of Visual Computing

Prof. Dr.-Ing. Marc Stamminger, Jonas Müller
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Research Focus

• methodological foundation: Corpus-Based Discourse Analysis (CDA)
• development of novel techniques (Mixed-Methods Discourse Analysis,

MMDA):
• visualization
• higher-order collocates

• ultimate goal: assist hermeneutic researchers in interpreting huge amounts
of textual data without excessive cherry-picking

• lexical nodes in the case study here:
• 福島 (Fukushima)
• 選挙 (elections)
• 脱原発 (nuclear phase-out)
• 日本 (Japan) + (原子*)|(原発) (nuclear energy)

+ focus on methodology
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Corpora – mass media

Frankfurter Allgemeine Zeitung (2011–2014)

• statistics:
• 306,580 articles, 1,656,372 paragraphs
• 145,055,523 tokens (1,981,726 types)

• linguistic annotation:
• TreeTagger (tokenization, POS-tagging, lemmatization)

Yomiuri Shimbun (2011–2015)

• statistics:
• 1,688,435 articles, 12,757,433 paragraphs
• 580,518,367 tokens (392,971 types)

• linguistic annotation:
• MeCab (SUWs)
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Corpora – social media (Twitter)

German Twitter

• 10,266,835 original posts
• linguistic annotation:

• tokenization: SoMaJo (Proisl and Uhrig, 2016)
• POS-tagging: SoMeWeTa (Proisl, 2018)
• lemmatization: work in progress

Japanese Twitter

• 411,452,027 original posts
• linguistic annotation:

• MeCab + special dictionary: ipadic-neologd (Sato et al., 2017)

+ removal of noise: approximately 20% (Schäfer et al., 2017)
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Corpus-Based Discourse Analysis (CDA)

• CDA means analyzing and deconstructing concordance lines (Baker, 2006)
• concordances are the essence of discourses

• finding discourses: nodes + attitudes
• (topic) nodes: defined by keywords or (more generally) corpus queries
• attitudes: collocates that are retrieved by statistical methods

• examples
• “refugees as victims” (Baker, 2006)
• “Fukushima as worst case scenario”

in practice:

• look at (n best) collocates of topic node
• make up categories on the fly
• categorize manually
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Collocates and Keywords

keywords

• given two frequency lists of lexical items
• perform statistical tests on frequency litss

• always viz. reference corpus
• measures: log-likelihood, log-ratio, frequency filter

collocates

• given a definition of a subcorpus
• rate lexical items according to association strength

• windows vs. segments (textual co-occurrence)
• association measures: see above

Heinrich & Schäfer (APCLC 2018) | FAU | CDA for Japanese Social Media September 17, 2018 6



From Textual Co-Occurrences to Collocates

• contingency table (cf. Evert, 2008)

w2 ∈ t w2 6∈ t
w1 ∈ t O11 O12 = R1

w1 6∈ t O21 O22 = R2

= C1 = C2 = N

• calculate expected frequencies subject to independence of co-occurrences
(Eij )

• apply association measure

LL(O11,O12,O21,O22) = 2∑
ij

Oij log
Oij

Eij
,
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Extension: Higher-Order Collocates

1. discourse collocates
• straightforward generalization with respect to textual co-occurrence
• look at co-occurrence frequencies of tweets that were identified to be part of

the discourse at hand (topic + attitude)
• collocates represent lexical items that play a role in the discourse

2. second-order topic-collocates (or attitude-collocates)
• look at co-occurrence frequencies of one set of lexical items c in tweets that

are about a certain topic t
• collocates of c that are particulary important for t
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Extension: Visualization

• based on high-dimensional word embeddings (Word2Vec) (Mikolov et al.,
2013)
• basis: 133,526,833 deduplicated and preprocessed Japanese tweets collected

between February 2017 and June 2018 via the Streaming API
• t-distributed stochastic neighbour-embedding (t-SNE) to project onto

two-dimensional plane (van der Maaten and Hinton, 2008)
• semantically similar items are pre-grouped together

• size of lexical items represents association strength towards (topic) node
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Case Study: Fukushima Effect



Mass media in the aftermath of 3/11 (Heinrich et al., 2018)

German (FAZ)
• salience of energy transition discourse relatively stable (2011–2014)
• nuclear phase-out (Atomausstieg) as part of this discourse: sparked shortly

after 3/11
• political actors and issues (Ethikkommission, electricity supply)
• economic actors (RWE)
• technological issues (Stromnetz)

Japanese (Yomiuri)
• nuclear phase-out (脱原発) in 2011:

• political actors (菅,野田,首相)
• economic issues (発電,稼働,復興)
• technological aspects (安全,燃料)

• nuclear phase-out in 2014:
• elections and politics (演説, as used in街頭演説)
• fewer words regarding economics (noteアベノミクス)
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Figure: Frequencies (in tweets per million) of selected topics during the observation period on a logarithmic scale.
The dashed line represents March 11, 2011. All observed frequencies peak at or shortly after 3/11.
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Figure: Node:福島 (Fukushima).
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Figure: Node:福島 (Fukushima).



Figure: Node:選挙 (elections).
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Figure: Node:選挙 (elections).



Figure: Node:脱原発 (phasing out nuclear energy).



Figure: Node:脱原発 (phasing out nuclear energy).



Figure: Node:脱原発 (phasing out nuclear energy).



Figure: Node:日本 (Japan).



Figure: Node:日本 (Japan).



Figure: Node:日本 (Japan).



Figure: Discourse Node:日本 (Japan) + (原子*)|(原発) (nuclear energy).



Figure: Discourse collocates of日本 (Japan) + (原子*)|(原発) (nuclear energy).
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Figure: Discourse collocates of日本 (Japan) + (原子*)|(原発) (nuclear energy).



Figure: Second-order topic-collocates of日本 (Japan) in tweets containing (原子*)|(原発) (nuclear energy).
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Figure: Second-order topic-collocates of日本 (Japan) in tweets containing (原子*)|(原発) (nuclear energy).



Conclusion



Qualitative Summary

• 福島 (Fukushima)
• has always been a topic on Twitter
• important collocates during the observation period are lexical items referring to

the accident (原発,原発事故) and the hashtag #save_fukushima, but also
the electric utility holding company東電 (TEPCO)

• focus shifts to political actors安倍首相 (Prime Minister Shinzō Abe) and the
results of and measures taken due to the radioactive accident:除染
(decontamination),汚染水 (contaminated water),放射能 (radioactivity)

• 選挙 (elections)
• huge peaks in the number of tweets at dates which coincide e. g. with the

elections of Tokyo’s governor after resignation of石原 (Shintaro Ishihara)
• further important collocates are結果 (results),都知事選 (gubernatorial

election), and候補(者) (candidate, candidacy)
• end of 2012: most important collocates have shifted towards自民 (Liberal

Democratic Party), nuclear power (plants) (原発)
• actors change
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Qualitative Summary (ctd.)

• 脱原発 (nuclear phase-out)
• enters the debate only a couple of weeks after 3/11
• whether or not to “break with nuclear energy” is a discussion led elsewhere, e.

g. inドイツ (Germany)
• further important collocates are福島 (Fukushima),原発 (nuclear power

plant), andデモ (demonstration)
• another peak in the end of 2012, with political actors as collocates such as未
来の党 (the Tomorrow Party of Japan) and山本太郎 (Tarō Yamamoto)

• 日本 (Japan) and (原子*)|(原発) (nuclear energy)
• before 3/11: collocates of Japan mostly general (語, other countries)
• in the aftermath of 3/11:地震 (earthquake),復興 (reconstruction),原発

(nuclear power plant), and赤十字社 (red cross)
• after 2012:原発 (nuclear power plant) remains an important collocate
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Conclusion and Future Work

• CDA of Japanese Twitter data in the aftermath of 3/11
• focus on methodological advancement of the field

• visualization (ease manual labour)
• higher-order collocates (triangulate semantics of discourses)

• qualitative empirical level:
• nuclear phase-out debate entered Japanese Twitter only several weeks

after 3/11
• salience of discussions about phasing out nuclear energy and about nuclear

energy in general is quite volatile and correlates i. a. with elections
• particular parts of the nuclear energy discussion entered the collocational

profile of the very general discourse around Japan

• where do we go from here?
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Towards Mixed-Methods Discourse Analysis

Heinrich & Schäfer (APCLC 2018) | FAU | CDA for Japanese Social Media September 17, 2018 36



Thanks for listening.
Questions?
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