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Abstract. We are concerned with extracting argumentative fragments
from social media, exemplified with a case study on a large corpus of
English tweets about the UK Brexit referendum in 2016. Our overall
approach is to parse the corpus using dedicated corpus queries that fill
designated slots in predefined logical patterns. We present an inventory
of logical patterns and corresponding queries, which have been carefully
designed and refined. While a gold standard of substantial size is diffi-
cult to obtain by manual annotation, our queries can retrieve hundreds of
thousands of examples with high precision. We show how queries can be
combined to extract complex nested statements relevant to argumenta-
tion. We also show how to proceed for applications needing higher recall:
high-precision query matches can be used as training data for an LLM
classifier, and the trade-off between precision and recall can be freely
adjusted with its cutoff threshold.

Keywords: Argument extraction · Semantic parsing · Corpus
queries · Social media · LLMs

1 Introduction

We report on a methodology for extracting arguments from posts in social media,
with the overarching aim of gaining an overview of arguments and views being
voiced. Argumentation on social media is characterized by a high degree of infor-
mality, which makes our endeavour, viz. mapping the argumentative landscape
on social media, particularly difficult.

In our central case study, we analyse English tweets about the Brexit refer-
endum in 2016. Tweets are particularly challenging because they are too short to
contain fully structured arguments (i.e., premises, conclusions, and links relating
the argument parts), see e.g. Bhatti, Ahmad, and Park [3]. Therefore, we aim
for a semantically precise method to capture argument fragments by parsing
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them into a pre-defined but extensible set of logical patterns, i.e. formulae with
placeholders in dedicated modal logics. For each logical pattern, we formulate
multiple dedicated corpus queries [11] reflecting different linguistic realizations
of the same type of statement. It is expected that such an approach will have
comparatively low recall but (usually) very high precision. This in fact suits
our intention to map general tendencies in the argumentative landscape and
reconstruct complete arguments from precisely parsed fragments, rather than
extracting each individual instance of an argument type.

In this paper, we demonstrate our overall workflow, query development
and evaluation results; in particular confirming that we arrive at high preci-
sion through corpus queries. In a subsequent extension of the approach, we
experiment with hierarchical patterns and associated queries, where we look
for matches of an inner pattern in the text spans corresponding to placeholders
of an outer pattern. Moreover, we present an approach that uses query results
as training data for an LLM classifier in order to change the precision-recall
trade-off, with promising results.

Related work Work on argument mining in social media often focuses on graph-
ical structure (e.g. [1,15]; see also Lytos et al. [19] for a survey, and Lytos et
al. [20] for an example of a recent, purely data-driven, approach), and has high-
lighted linguistic and logical challenges [4,7,14].

Our high-precision approach based on logical patterns and queries appears
to be new as such, and is distinct in particular from text mining with knowledge
patterns (e.g. [6,23]). Work on the extraction of counterfactuals [32] follows
partly similar methods, but uses regular expressions instead of linguistically
informed corpus queries.

Recent work on argument mining in Twitter has concentrated on identifying
high-level categories such as argumentative vs. non-argumentation, factual vs.
opinion, claim vs. support vs. rebuttal, etc., which specify the general role of
each tweet in an argument (e.g. [2,12,30]). This is much more coarse-grained
than (and also fundamentally different from) our approach of extracting the
content of argumentative fragments in the form of logical patterns.

NLP approaches to argument mining often focus on automatic classification
of such categories by training machine learning algorithms (e.g. a support vector
machine or logistic regression), see e.g. [5] for a survey. However, with only a
handful of positive examples every one hundred tweets (see Sect. 3.2), obtaining a
sufficient amount of training examples is prohibitively expensive. Recent work on
large language models (LLMs), on the other hand, promises to leverage linguistic
knowledge derived from unlabeled data; these models only have to be fine-tuned
on the classification task at hand [see e.g. 25,26]. We will show in this paper that
fine-tuning a general-purpose LLM on a handful of positive examples does not
yield satisfying results. A more competitive approach are frameworks for few-
shot learning. In SetFit [33], a pre-trained Sentence Transformers [27] model is
first fine-tuned on a number of contrastive pairs of labelled texts and then used
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to encode the training data. Finally, a text classification head is trained using
the encoded data.1

Our combined approach outlined below, i.e. leveraging corpus queries for
training an LLM, is in fact similar to data augmentation [13], i.e. increasing
the diversity of training examples without collecting new data. However, data
augmentation usually works by creating artifical examples that are very similar
to the original positive examples (or are made up altogether), while our app-
roach uses only authentic examples as training data. Finally, in the case that
high-quality training data are not available, one could use “weak labeled data”
[31], applying coarse heuristics to extract training examples while allowing for a
significant amount of noise. This also bears similarities to our approach, but is
fundamentally different from our high-precision, low-recall strategy.

2 Argumentative Fragments

Given the complexity of natural language argumentation, we approach argument
mining in a piece-by-piece manner, aiming to parse argument fragments from
our inventory of predefined logical patterns by means of high-precision corpus
queries. This means we define logical patterns expressing forms of propositions
used in arguments which then have multiple corresponding corpus queries each
covering multiple syntactic realizations to express such a proposition.

2.1 An Inventory of Logical Patterns

Starting from an analysis of argument schemes in the style of Reed, and Macagno
[34], we created an initial inventory of logical patterns for argumentation. This
inventory was extended with additional patterns that were common in our data
but outside of the standard catalogue of argumentation schemes, to adapt to the
informality of arguments on social media.

The patterns are formulae with sorted placeholders in dedicated modal logics.
A typical example is the desire pattern D{?0:entity}{?1 : formula} expressing
that entity ?0 wants formula ?1 to become true. Note that the sort entity does
not require the expression to evaluate to a single entity but instead describes
an abstract group of entities in the sense of Humml and Schröder [17]. Patterns
can also go beyond single modality statements to more complicated formulae or
even sets of formulae (or equivalently conjunctions) like, e.g., the group knowledge
pattern K{?0:entity}({?1 : formula}); (?2) =⇒ (?0) expressing that entity ?2 is
part of entity ?0 whose members know that formula ?1 is true. The underlying
semantics of abstract group knowledge then implies that ?2 also knows ?1, i.e.
K{?2:entity}(?1). This pattern could, e.g., be an indicator for an argument from
Position to Know [34]. The logical framework we use has been described in
more detail in earlier work [8,9]. As indicated above, the overall character of the
1 Other state-of-the-art methods such as T-Few [18] might yield even better results,

but SetFit is a convenient and widely-used framework that does not require any
prompt-engineering.
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representation logic is modal in the sense that it features operators expressing
that statements hold in a certain way; e.g. the operators D and K (‘desires’ /
‘knows’) featuring in the above examples are modal operators.

Our motivation for extracting argumentative content in the form of logical
statements is to leverage automated reasoners to aid in reconstructing complete
arguments. In everyday argumentation, it is uncommon and even socially unac-
ceptable to give detailed arguments that mention every reasoning step and every
premise. Instead, dialogical argumentation relies on shared common knowledge
between the dialogue participants to complete the missing parts of arguments.
In our processing pipeline, the logical reasoner and a knowledge base are even-
tually intended to take the place of the human reasoner trying to fill in the
missing pieces of the arguments. For example the reasoner might combine desire
statements into larger desired states of the world. In our corpus of tweets the
queries retrieve two desire statements attributed to Cameron: “PROOF Cameron
WANTS Turkey to join the EU [. . .]” “Ersatz ‘reform deal’ proves Cameron
always wanted the UK to stay in the EU [. . .]” The reasoner would then draw
the conclusion that Cameron wants both the UK and Turkey to be in the EU.

2.2 Nested Patterns

Combining patterns from our inventory can yield many variants of more complex
statements. We follow a recursive approach to extracting relevant information
from selected pattern combinations. Empirically, we apply corpus queries to the
text spans matching placeholders of an “outer” pattern in order to find matches
of further “inner” patterns. The sorting discipline on placeholders then implies a
corresponding sorting discipline on the patterns themselves with different logic
syntaxes used in patterns of different sorts. For example, a formula describing
an entity will employ different modalities than a formula defining an action or a
truth statement. In Fig. 1, the entity slot in the desire pattern is expanded by fill-
ing in a more complicated entity expression from the set of entity patterns; in the
example, this expression denotes the intersection of two entities (remember that
entities are abstract groups). Similarly, the placeholder ?1, which represents a
truth statement, could be expanded with a more concrete pattern, such as mem-
bership [8]. A concrete realization of the doubly extended pattern would be an
expression like “trustworthy economists favour the UK being in the EU”, which

formula patterns D {?0:entity} {?1 : formula}

D {?0:entity ?2:entity} {?1 : formula}

expand
entity

entity patterns

Fig. 1. A nested pattern
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would be expressed as the formula DisTrustworthy∧isEconomist(UK → EU). In practice,
this approach is implemented by hierarchical queries as discussed in Sect. 5.

3 Data

3.1 Corpus and Linguistic Annotation

We use the data set collected by Dykes et al. [9], which consists of tweets contain-
ing the token brexit (case-insensitive, with or without hashtag marker) collected
before and after the UK Brexit referendum in 2016. Our final corpus only includes
original tweets and has been filtered with a deduplication algorithm (which dis-
regards case differences, @-mentions, URLs, and hashtags). It amounts to ca.
4.3 million tweets with a total size of ca. 80 million tokens, most of them posted
close to the actual referendum on June 23, 2016.

The linguistic annotation pipeline follows [8], comprising Ark TweetNLP [22]2
for simple PoS tags, the OSU Twitter NLP tools [28]3 for Penn-style PoS tags
and named entity recognition, and a lemmatizer based on Minnen, Carroll, and
Pearce [21]. Sentence boundaries are inserted using SoMaJo [24]4. Note that
these systems generate different tokenization layers, which are reconciled in
post-processing. The final corpus is indexed using the IMS Open Corpus Work-
bench [10].5

3.2 Manual Annotation of Argument Fragments

Several student assistants were hired to annotate relevant argument fragments
in two random corpus samples: pre contains 785 tweets from before the referen-
dum, post contains 973 tweets from August 21, 2016 (i.e. after the referendum).
Doubtful cases were discussed with the project members, and all disagreements
in annotation were adjudicated on a regular basis. Note that prevalence of pat-
terns is low: only about 5–7% of all tweets contain desire and 7–10% contain
membership, cf. Table 2. Additionally, random samples of query matches (data
sets matches) were annotated, amounting to a total of 3997 tweets for the desire
pattern and 1005 tweets for membership.

Annotation was highly time-consuming, thus it was unrealistic to obtain a
sufficient number of examples to train a machine-learning classifier to detect
patterns automatically. Several factors contributed to this challenge: Firstly,
the aforementioned low prevalence of patterns meant that annotators needed to
check vast numbers of tweets. Secondly, the linguistic realizations that do occur
take many different forms even within the same pattern, which made it easy to
miss relevant cases. Thirdly, despite working with detailed annotation guidelines,
the decision of whether a given expression fits a particular logical formula or not

2 http://www.cs.cmu.edu/~ark/TweetNLP/.
3 https://github.com/aritter/twitter_nlp.
4 https://github.com/tsproisl/SoMaJo.
5 https://cwb.sourceforge.io/.

http://www.cs.cmu.edu/~ark/TweetNLP/
https://github.com/aritter/twitter_nlp
https://github.com/tsproisl/SoMaJo
https://cwb.sourceforge.io/
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still proved difficult. These difficulties are reflected in the (sometimes low) inter-
annotator agreement scores in Table 1. It is worth noting that the annotators
where instructed to err on the side of annotating doubtful cases positively, with
corner cases included in the subsequent adjudication process.

Table 1. Kappa scores for the three most annotated patterns. E, M, and V represent
three independent student assistants, gold was obtained in a subsequent adjudication
process.

(a) desire

E M V

M 0.39 - -
V 0.79 0.39 -

gold 0.46 0.86 0.45

(b) membership

E M V

M 0.66 - -
V 0.59 0.62 -

gold 0.80 0.72 0.63

(c) opposition

E M V

M 0.35 - -
V 0.59 0.42 -

gold 0.36 0.76 0.46

4 Corpus Queries

4.1 Methods

The manually annotated instances of our argument patterns serve as templates
for specialized corpus queries. For the case of desire, recall that our aim is to find
realisations of the formula D{?0:entity}{?1 : formula} . The following statements
are examples of posts expressing a desire according to our guidelines:

1. “without giving u reasons for u to argue with, I think I’m in favour of an
exit !!”

2. “Several key @vote_leave folks on record wanting to privatise #NHS &
#Brexit #Tory ministers never showed any concern for NHS @stariep”

3. “@SadiqKhan Sir, are you in favor of #Brexit?”
4. “eAndrew Neil is chair of @spectator which has come out for #Brexit How

can @afneil still be allowed control of #BBCSDP #BBCDP?”
5. “Bryan Adams is in favour of Brexit.”

While these examples all correspond to our formula, they are clearly not
identical linguistically. Variation occurs in terms of what the entity and the
formula refer to, as well as how each concept is expressed regarding lexis and
syntax. Nevertheless, examples 1, 3 and 5 can be generalised on the linguistic
level to ENTITY is in favour of FORMULA. Based on such similarities, we
constructed the following query to extract further similar instances of desire
from the overall corpus:
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@0[::] /entity_np_actor [] @1[::]
[xpos=‘‘MD’’ | lemma=‘‘be|have ’’ | upos=‘‘ADJ|ADV ’’]*
[lemma=‘‘in ’’] [upos=‘‘ADJ ’’]* [lemma=$nouns_desire]
[lemma=‘‘for|of|pro|that|to ’’]
@2[::] (/ entity_np_all [] | [xpos=‘‘VBG ’’]) (/ lexical_words [])

↪→ * @3[::]

Our queries are written in the query language [11] of the corpus query processor
(CQP) of the IMS Open Corpus Workbench (CWB, [10]), enabling efficient
execution of complex queries in large corpora. The query language is based
on regular expressions over token descriptions, which are Boolean expressions of
attribute-value pairs (where values can again be matched by regular expressions).
For example, [lemma=‘‘be’’] retrieves all forms of BE (be, am, are, is, was, were,
been, being), and [upos=‘‘ADJ’’]* retrieves sequences of adjectives. Additionally,
structural annotation elements (such as tweets, paragraphs or sentences) can be
matched by XML tags, e.g. <tweet>[]* </tweet> for a complete tweet.

The most important parts of this query are the slot fillers. For desire, they
represent the ENTITY and FORMULA slots. In the corresponding query, the
tokens belonging to a given slot are enclosed in target markers: @0[::] ...
↪→ @1[::] (ENTITY) and @2[::] ... @3[::] (FORMULA). The ENTITY is
modelled with a CQP macro /entity_np_actor[], which expands to match noun
phrases containing personal pronouns, proper names, or nouns from a word list
referencing people or organizations (e.g. politician or party). Limiting the noun
phrase in this way ensures that the expression in the ENTITY slot can reason-
ably be expected to express a meaningful desire. While we will necessarily lose
some recall with this restriction, a more flexible ENTITY slot filler would com-
promise precision too much. However, the word lists were extended using word
embeddings, which we used to suggest distributionally similar items to the ones
that had been collected manually. The macro /entity_np_all[] in the FOR-
MULA region matches a much more general noun phrase, since FORMULA can
refer to a wider range of concepts. Alternatively, this slot can be realized with
a verb in gerund form (e.g. to be in favour of exiting), followed by an arbitrary
number of content words within the same tweet. The middle part of the query
provides linguistic structure to ensure that it actually matches an expression
of desire. After optional modifiers, its main part is in favour/hope/support/. . .
for/of/. . . .

Development Environment. There are two major shortcomings to the main
CWB user interface CQPweb [16], which we initially used for query development
(similar limitations apply to other tools like AntConcc6 or Sketch Engine7).
Firstly, when writing a large repertoire of queries, reusable elements like word
lists and macros need to be managed efficiently. While CWB can easily read

6 https://www.laurenceanthony.net/software.
7 https://www.sketchengine.eu/.

https://www.laurenceanthony.net/software
https://www.sketchengine.eu/
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macros and word lists from plain text files, CQPweb does not provide access to
these files.

More importantly, these tools are designed with traditional corpus studies
in mind, which typically use much shorter queries. Accordingly, functionality
for displaying and sorting query results is usually optimised for single words
and short expressions. In our usage scenario, i.e. argument queries, it is crucial
to mark and highlight multiple positions within query matches. Queries that
retrieve surface realizations of the desire pattern need to specify two slots (text
spans) representing the ENTITY and FORMULA placeholders, respectively.

It has only recently become possible in version 3.4.16 of CWB to mark more
than a single position inside a query match (in addition to start and end of
the match), using anchors @0, . . . , @9. This new feature requires support from
a wrapper application, though, which has to run every query up to 5 times,
collecting two anchor positions in each step. We provide the Python library cwb-
ccc8, which includes such a wrapper.9 Anchor positions can also be adjusted by
an integer offset; this is especially helpful if the query contains optional elements
(with quantifiers ?, + or *).

Since developing corpus queries is an iterative hermeneutic process, carefully
balancing precision and recall for the task at hand, it would be very inconvenient
to run a wrapper from the command line and collect its results whenever a query
is modified. We thus developed Spheroscope10, a web app specifically dedicated
to the iterative development of corpus queries.

Here, queries can use an arbitrary number of word lists and macros, which
can be stored and re-used via the user interface. The interface also enables users
to obtain the frequencies of all words from a word list for any given corpus.
Additionally, semantically similar words can be suggested for semi-automatic
extension of word lists. For semantic similarity, we use custom word embeddings
trained on a larger, independent sample of English tweets. Similar items can
be sorted by their corpus frequency or by cosine similarity (by default, up to
200 items are displayed, hapax legomena excluded). Similarly, macros can be
defined, named, stored, inspected (frequency breakdown), and reused via the
user interface.

Iterative Query Development. In order to incorporate feedback from manual
annotation and to reflect our developing understanding of possible realizations
of our continuously refined inventory of argument fragments, query development
is necessarily iterative. This affects evaluation, since precision and recall need
to be reassessed with every change to the queries. Recall can only be measured
on random subsets of tweets; precision can be assessed qualitatively by reading
concordance lines of query matches as well as quantitatively by using labelled
examples. The development environment thus directly indicates for each query

8 https://pypi.org/project/cwb-ccc/.
9 The module provides additional functionality for tradtional corpus linguistic tasks

such as keyword and collocation analysis. It is now the official Python API to CWB.
10 https://github.com/ausgerechnet/spheroscope.

https://pypi.org/project/cwb-ccc/
https://github.com/ausgerechnet/spheroscope
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match whether it is a true positive (if the tweet is contained in any gold stan-
dard), cf. Figure 2.

Fig. 2. Concordance View. For each query result, the actual text of the whole tweet is
displayed, as well as the surface realizations of each defined slot. Additionally, column
TP indicates whether the match is a true positive (True), false positive (False), or
unknown (?) as the tweet is not in the gold standard.

4.2 Evaluation and Discussion

Results for our current version of the queries for desire and membership can be
found in Table 2. Note that the most reliable estimates for precision can be taken
from the annotation of actual query matches, whereas recall is most accurately
estimated from post (since pre was used in the course of developing queries).

Table 2. Pattern-based evaluation of query approach for patterns desire and mem-
bership on different data sets alongside prevalence values. Recall of querying can most
reliably be estimated from post, while precision can most reliably estimated on actual
query matches (indicated in bold).

pattern data set prevalence TN FN TP FP precision recall support

desire pre 0.07 721 31 30 3 0.91 0.49 785
post 0.05 923 25 19 6 0.76 0.43 973
matches 2361 97 0.96 175022

membership pre 0.10 705 62 13 5 0.72 0.17 785
post 0.07 901 65 6 1 0.86 0.08 973
matches 952 53 0.95 54412

As noted above, corpus queries are abstractions of the manually identified
hits for a given pattern in the gold standard (based on pre). While they help
us to find several hundred thousands of instances of desire on the corpus, their
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recall is restricted to maximize precision. In this section, we explore the nature
of potential recall issues in more detail.

Statistical measures on precision and recall only show part of the picture:
since our logical patterns are much more abstract than their realizations in the
corpus, it is likely that, for politically relevant statements, even if an individual
instance was missed, we may still have found other tweets containing equivalent
information on the same entities and concepts. We therefore conducted a quali-
tative evaluation of tweets from our gold standard that were marked as desire,
but were not retrieved by any of the queries written for this pattern.

We found a total of 65 false negatives for desire in our gold standard. Slightly
more than half of these instances were excluded from further analysis because
they were either no longer part of the corpus (9), they were assigned to sub-
patterns of desire (6), or because they were categorized as purely situational,
e.g. because the entity was the speaker (22). The remaining 28 tweets were left
as genuinely relevant statements to examine in more detail.

Typical reasons why a tweet was missed by the queries include both syntactic
and lexical properties. On the syntactic side, we found long distances between
the entity and the formula (Banks now call for ‘passporting’; to be ditched
and instead want a ‘hard Brexit’). Similar issues relate to tweets containing
uncommon vocabulary or typos in slots using word lists (Britian want Brexit
to go away).

In order to see whether tweets with equivalent content were present in the
query results, we searched for the ENTITY for each of these false negatives
within the query matches for desire and read the matches. For 23 out of 28
cases, an exact or very close match was found. For instance, while Dennis Skin-
ner for Brexit !!! YASSSSSSS !!!! was missed, our desire queries matched Dennis
Skinner backs Brexit for democracy and Labour MPs Dennis Skinner and John
Mann back Brexit. Occasionally, the ENTITY was expressed in slightly different
ways, but could still be related back to the same referent with contextual under-
standing. This incudes the following tweet, which we missed due to its relative
clause: Andrew Neil is chair of @spectator which has come out for #Brexit.
While our query results for desire did not include the @spectator account as the
ENTITY, several instances referred to The Spectator.

For five relevant false negatives, we could not find a very similar equivalent
in the query results. In some cases, the ENTITY was a relevant actor, but still
infrequent in the corpus ( Globalists R desperate to abolish nations & families).
Alternatively, the FORMULA was too vague to be reconstructed (You can sense
people revelling in it on some level. Desperate for something to come out that
proves Farage or Leave or Brexit did this).

In summary, this evaluation suggests that, at least for statements that have
been expressed by a reasonably large number of users, the queries mostly still find
logically equivalent propositions even where individual realisations are missed
due to unusual wording or syntax.
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5 Hierarchical Queries

5.1 Methods

Besides running on the overall corpus, queries can be nested to find argument
fragments within the slots of larger fragments. For instance, if we run queries
for the membership pattern on the FORMULA slot of our desire queries, we
expect the results to be a hierarchical combination of the two patterns (e.g. I
want Britain to be in the EU ). The technical implementation consists of four
steps:

1. Run queries for a given pattern and extract the text spans matching the slots
of individual placeholders.

2. Form one sub-corpus per placeholder slot containing only these text spans.
3. Run queries for patterns of the correct sort on each sub-corpus.
4. Further instantiate the extracted formulae by substituting placeholders in

the partial formula of the outer query with the formula obtained from the
sub-query.

It is obvious that, in order for the results to be meaningfully interpretable,
the inner query needs to be contained within the relevant slot of the outer query.
However, it is less clear whether one should only consider exact matches (where
the membership statement matches the entire FORMULA slot of desire) or also
accept cases where only a part of the outer slot is matched by the inner query.

5.2 Evaluation

Therefore, we evaluated hierarchical queries for the combined pattern ENTITY
desires MEMBERSHIP.

Table 3. Evaluation of hierarchical queries for ENTITY desires MEMBERSHIP for
different positions of the inner query in the outer slot

inner/outer #matches TP FP correct example

exact 446 48 2 Donald Trump Supports The UK Leaving The European Union
left 260 33 17 he would support Texas leaving the US and becoming an independent state
right 215 11 39 let’s hope we get a strong turnout on the day and we leave the EU
within 163 0 50 —

Table 3 shows the number of matches for each position of the inner query
in the slot of the outer query, as well as the number of true and false posi-
tives in a manual validation of a random sample of 50 tweets for each position.
Exact matches are almost always correct instances of the combined pattern. The
majority of cases where the inner query match is only aligned with the left slot
boundary are also correct, although the precision is considerably lower than for
complete matches.
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5.3 Discussion

A common type of false positive in this set of tweets is due to the ambiguity
of the word join, e.g. We wish the Netherlands will join us soon with a #Nexit
and kick out their anti-democratic rulers. Our combined query misinterprets this
tweet as the Netherlands becoming a member of us. Most matches where the end
of the inner query result is aligned with the right slot boundary are mostly false
positives. Even though such cases usually do involve statements about member-
ship, the membership assertion is typically embedded in some other statement
that would also need to be parsed for a meaningful interpretation (e.g. I really
hope the Brits understand how turbulent Europe will be if UK leaves EU).
Finally, none of the cases where the inner query match is strictly contained
within the outer query’s slot were true positives. Similarly to the right overlap,
while the formula was typically related to membership, a multi-step parsing pro-
cess involving additional patterns would have been required (I wished I knew if
UK leaving the EU is good or bad).

6 Fine-Tuning LLMs

6.1 Methods and Evaluation

Supervised Prediction. Due to their low prevalence in the corpus, training an
automatic system to detect individual argumentative fragments is challenging.
The straightforward state-of-the-art approach is to fine-tune a large language
model (LLM) on the manually annotated gold standard. The combined data
set, comprising pre and post, cf. Section 3.2, consists of 1758 annotated tweets
with 105 positive examples of desire (i.e. a prevalence of ca. 6%). Using 70% as
training data and 30% as test data leaves us with 73 positive training examples
(out of 1231 training examples), and 32 positive test examples (out of 527 test
examples).11

In a first attempt, we use distilbert-base-uncased [29] as a base model and
fine-tune using the transformers package with standard settings.12 The trained
model yields scores for both classes (desire and no desire); we focus on the pos-
itive class here. Note that scores for the two classes have a near-perfect negative
correlation. A cut-off value for this score determines the trade-off between pre-
cision and recall; see Fig. 3 for the resulting precision-recall curves. A standard
composite measure is the area under this curve (PR-AUC).13 As can be seen
from Fig. 3b (line LLM (combined)), the trained model performs poorly: preci-
sion values of, say, 50% can only be achieved with less than 25% recall (and vice
11 All train/test splits are stratified random samples, i.e. we take random samples but

make sure that the ratio of positive examples remains the same across splits.
12 AutoModelForSequenceClassification, learning rate 2e-5, 5 epochs, 0.01 weight decay.
13 Alternatively, we could look at the area under the receiver-operating characteristic

(ROC) curve, which plots the true positive rate (precision) against the false positive
rate (1 − specificity). This curve is however more suitable for situations where both
classes (positive and negative) are equally prevalent or at least equally important.
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(a) PR curve of LLM (trained on
matches) on all of combined.

(b) PR curve of different LLMs on test-
split of combined.

Fig. 3. PR curves of LLMs on combined and its test split.

versa). The queries, on the other hand, achieve the expected high precision of
88% on the test set, and a stable trade-off with 47% recall.

As mentioned in the introduction, recent advancements in NLP have brought
forth LLM frameworks that can generalise from very small numbers of training
examples. Here, we use SetFit as such a few-shot classifier, and fine-tune the
paraphrase-multilingual-mpnet-base-v2 model on our training examples. The PR
curve of this approach outperforms the first attempt by a large margin (see
Fig. 3b, line SetFit (combined)) and achieves competitive results compared to
our query-based approach.

Generalizing from Query Matches. Additionally, we present an approach
that leverages our corpus queries as training data for fine-tuning the LLM. We
use all query matches, except for those in the combined gold standard to ensure
comparability. We take 70% of a total of 145,699 matches for the desire pat-
tern as positive training examples and add the same amount of random tweets
(excluding query matches and those in combined) as negative examples. Note
that for training, we assume all query matches to be instances of desire and
randomly selected tweets to be negative examples. This is a reasonable approxi-
mation due to the high precision of the queries (ca. 96%) and the low prevalence
of desire (ca. 6%).

Our approach can likely be improved considerably by optimizing any of the
following parameters: Firstly, we could train on all query results. However, with
the setting at hand, we can also evaluate how well the LLM predicts query results
(see below for results). Secondly, we could provide a dataset with the (estimated)
prevalence of desire. Lastly, we could try different base models and parameter
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settings (learning rate, weight decay, etc.). However, our goal here is a proof of
concept, not engineering the best possible system.

Unsurprisingly, an LLM trained on query matches can accurately distinguish
query matches from other tweets, i.e. it can learn the formal linguistic struc-
tures expressed by the queries. Recall that we only used 70% of the matches
as positive training examples. Evaluating the LLM classifier on the remaining
examples (mixed with random tweets) yields a PR-AUC of 0.9978. However, we
are interested in its performance to detect the desire pattern, not just desire
that is also captured by the queries (whose estimated recall is ca. 43%).

The precision-recall curve of this LLM on combined in Fig. 3a is thus more
interesting. We also indicate the performance of the corpus queries in the graph.
It is no coincidence that this data point lies on the PR curve of the LLM,
which retrievs query matches nearly perfectly. At this point of the curve, the
query matches and LLM predictions are almost identical. By lowering the LLM
decision threshold, we move down the PR curve, improving recall at the cost of
precision. Alternatively, we can further improve precision if we accept an even
lower recall. Many reasonable trade-off points between precision and recall are
available. In the graph, we also the trade-off that maximises F1, i.e. the harmonic
mean between precision and recall. We determine this value ex post for reasons
of simplicity; in practical applications, it can also be determined on a separate
development set.

Table 4. Comparison of different approaches to detect desire on the complete data
set combined (top) and on test-split of combined (bottom). The query approach yields
highest precision, the LLM trained on query matches can yield higher recall with with
still decent precision values (as exemplified by the point of optimal F1, indicated in
bold).

data set prev approach FN FP TN TP precision recall F1

combined 0.06 LLM (matches) 28 33 1620 77 0.70 0.73 0.72
queries 56 9 1644 49 0.84 0.47 0.60

test-split 0.06 LLM (matches) 9 6 489 23 0.79 0.72 0.75
LLM (combined) 19 26 469 13 0.33 0.41 0.37
SetFit (combined) 7 6 489 25 0.81 0.78 0.79
queries 17 2 493 15 0.88 0.47 0.61

Figure 3b shows PR curves on the test set of combined, where we can com-
pare the LLM trained on the train-split of combined (LLM (random2000)) with
the one trained on query matches (LLM (matches)). The LLM trained on query
matches is far superior to the one trained only on a couple of dozen of positive
examples. Table 4 lists detailed results for all approaches on combined and its
test-split (for LLMs, the decision threshold is set at the point of optimal F1).
In terms of precision, the corpus queries yield the best results (as by design).
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However, the LLM trained on query matches can yield better recall, as is exem-
plified at the point of optimal F1 of the PR curve.

6.2 Discussion: Qualitative Comparison of Approaches

As seen in Table 4, at the point of optimal F1, the LLM approach trained on
query matches achieves higher recall than the queries, but lower precision. In
this section, we examine the differences between these two approaches through a
qualitative analysis of tweets in the gold standards that were found by the LLM,
but not by the queries.

The first group of tweets are newly identified true positives, i.e. tweets that
contribute to the LLM achieving higher recall than the queries. The results sug-
gest that the improvement in recall can be attributed to systematic factors. The
main patterns in the true positives unique to the LLM include tweets containing
typos (Britian) or short modifier phrases (Denmark for one will be queuing
up to leave). While it would technically be possible to write queries that handle
such cases, such modifications would either introduce unwarranted complexity
for relatively small improvements, or they would reduce the queries’ precision
by introducing more opportunities for false positives.

Additionally, the queries rely on linguistic pre-processing, in particular on
POS tagging. While this information is helpful in specifying grammatical pat-
terns, tagging errors occasionally prevented the queries from finding relevant
tweets. Thus, the LLM found several nominalizations that the POS tagger misin-
terpreted as adjectives, causing the query to miss a noun phrase (e.g. The British
want EU migrants to stay). Similarly, the queries impose semantic restrictions
via word lists where necessary, which obviously limits the scope of words that
can possibly be matched in a given position. In contrast, the LLM found tweets
with unusual entities like noted Europhile paper backs Brexit.

Finally, some hits found by the LLM contained syntactic patterns for which
we had no queries – either because the expression contained non-standard syntax
(If we Brexit., ending the Barnet agreement, I’m for! ), or because the construc-
tions were too rare to reasonably justify developing a manual query (Very much
looking forward to seeing nigel farage in action tonight).

False positives (FP) unique to the LLM were usually syntactically similar to
one of the queries, but did not match the correct semantics (#Brexit gloom is
for losers). In rarer cases, the tweets contained some reference to desire that was
too implicit according to the guidelines (“Being pro brexit is wacist!” said the
hipster white brits to the black brits – this tweet is not considered desire since it
is a general statement rather than a specific entity desiring something).

7 Limitations

The case study currently pursues a comparatively narrow topical focus; the gen-
eralizability of our findings remains to be explored. Scaling the overall approach
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to large repositories of logical patterns is possible in principle but resource-
intensive: Firstly, the method relies on the manual development of corpus queries,
which involves corpus-linguistic analysis, and secondly, query development needs
manual annotation of random samples to find suitable starting points (however,
queries then generalise from very few examples). The task of annotating sam-
ples for matches with logical patterns is conceptually difficult, and agreement
between human annotators is comparatively low (with notably higher agreement
on the post dataset). Our approach to fine-tuning LLMs using query results is
currently at the proof-of-concept stage and could likely be substantially improved
in further work.

8 Conclusion

We have described an approach to extracting argument fragments from short text
snippets on social media, using corpus queries to fill slots in predefined logical
patterns. Patterns and queries can be applied in a nested fashion, allowing for
the extraction of more complex semantic content. We have demonstrated an
application of our methodology in the generation of training data for use in the
fine-tuning of LLMs. Without any manual annotation, we achieve comparable
results to state-of-the-art few-shot learning approaches such as SetFit that have
been trained on more than 1200 manually annotated tweets.

Ongoing efforts aim to conduct automated logical reasoning steps over the
extracted argument fragments, which will require use of semantic similarity mea-
sures. Moreover, we intend to extend the scope of the method both w.r.t. sup-
ported lanuages and w.r.t. the length and degree of coherence of the underlying
text, covering also, e.g., newspaper articles or parliamentary debates, and aiming
to extract argumentation chains instead of just argument fragments.

Acknowledgements. The work has been funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) – 377333057 “Reconstructing Arguments
from Newsworthy Debates (RAND)”.
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Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.
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